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ABSTRACT 

The production of synthetic polymers represents an 
important part of chemical industry. In these processes it 
is common that the same process is used for the 
production of different kind of products (various 
molecular weights, compositions, etc.). Therefore, beside 
the optimization of the operating conditions related to the 
production of different products, it is also important to 
minimize the time of the grade transition reducing the 
amount of off-specification products. 
This optimization can be considered as an optimal control 
problem. Among the wide range of tools and algorithms 
can be used to solve optimal control problems this paper 
studies the applicability of  model predictive control 
(MPC) solutions.  In the chemical industry the influence 
of MPC is increasing, they are very successful in wide 
range of industrial applications. This became possible 
because more and more algorithms are available for the 
implementation of model predictive controllers. MPC 
requires a proper model for the prediction of the effect of 
the current control signal to allow its optimization.  It is 
important to note that the nonlinear behavior of the 
process mainly appears during grade transitions than at 
steady state operation. This phenomenon would require 
the utilization of nonlinear models in the controller. 
However, the application of nonlinear first-principles 
models is restricted due to the formulation of these 
models requires the identification of large amount of 
kinetic parameters, which can be very time-consuming 
and costly. 
In these situations the applications of data-driven models 
could be more beneficial. Hence this paper MPC solution 
for the optimization of grade transitions based on 
input/output data driven models is studied. 
The free radical polymerization reaction of methyl-
metacrylate is considered using azobisisobutironitil 
(AIBN) as initiator, and toulene as solved. The aim of the 
process is producing different kind of grades, and the 
number-average molecular weight was for identify the 
right state of process, and it can be influenced by the inlet 
initiator flow rate. The proposed controller is compared to 
the wide-spread applied PID controllers and the control 
performances results are qualified the ISE (integral 
Square of Error) criteria. 
Using the impulse response and the step response models 
of the reactor, Dynamic Matrix Controller as MPC has 
been designed. The results show that the performance of 
the model predictive controller is better than the 

performance of PID controller, which is also proved by 
the ISE criteria. 

Keywords: MPC, predictive control, polymerization, 
impulse response 

INTRODUCTION 

The production of the synthetic polymers represents an 
important part of chemical industry. In this industrial 
segment it is usual that one reactor is used for producing 
different kind of products (various molecular weights, 
compositions, etc.). 
During transitions between products, off-spec products 
are produced. This product is generally worth less than 
the on-spec material; therefore it is of interest to minimize 
its production. The on-spec material can be produced 
under varying circumstances and at varying operating 
points, which are more or less economically sound, 
motivating optimization of the production during 
production stages. 
In these processes a large number of different grades are 
produced, and the transition times between the 
productions may be relatively long and costly in 
comparison with the total amount produced. The 
optimization of complex operating processes generally 
begins with a detailed investigation of the process and its 
control system. It is important to know, how databased 
information can support the optimization of product 
transition strategies. The optimization of product grade 
transition is a typical example for complex optimization 
in process industry [6]. 
It is common to define an objective function, for example 
minimize the grade transition time, this way reducing off-
specification products. The nonlinear behavior mainly 
appears during grade transitions, so handling these 
transitions are a complex and difficult problem to solve, 
so-called optimization strategies are time-consuming to 
define. 
The control of polymerization reactors can be difficult 
and complex problem, for example due to the nonlinear 
dynamic behavior, the multiplicities of steady states, 
parametric sensitivity. One kind of problem is the large 
amount of kinetic parameters, which are essential for 
creating a first principle model, but obtaining these 
parameters can be very time-consuming from the 
literature, laboratories, pilot-plants, and sometimes it is 
possible that the kinetic mechanism should not be 
available which can also make difficulties while making 
the first principle model. So it is useful to find those 
methods, where these pieces of information are not 
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necessary, so model can be crated from input-output data, 
by identifying the model parameters, and an appropriate 
controller can be developed for the process from these 
data. 
Unfortunately it is very difficult the find the right tuning 
parameters in the whole operation range because of the 
nonlinearity of the process, and identified models from 
input output data are mostly linear. 
Since the process trajectory within a processing stage 
depends on the process trajectory of the preceding stage, 
the rigorous approach is to treat the production 
optimization problem as a whole, including phases of 
transition as well as phases of production. This can be 
considered as a large-size real-time optimization (RTO) 
or dynamic real-time optimization (DRTO) problem [2], 
in which optimal set points or trajectories are calculated 
in order to minimize economic objectives subject to 
constraints. Several algorithms have been published to 
effectively solve this production optimization problem 
using dynamic optimization. These advanced algorithms 
can be formulated as a so-called multistage dynamic 
optimization problem, where the production time is split 
up into several processing stages. Most of these tools 
require accurate model of the process, which is not always 
available.  
Treating this kind of optimization problems is the main 
target for us, and this paper would be an introduction to 
the optimization methods. In the industry the influence of 
model predictive control is increasing [3], they are very 
successful in wide range of industrial applications. This is 
true because more and more algorithm are available for 
planning model predictive controllers. It can be useful to 
compare the widespread applied PID controllers, and the 
increasingly applied model predictive controllers. For this 
study we choose a PI controller to compare with a 
dynamic matrix controller, and we qualified the 
performance with ISE (integral Square of Error) criteria. 
Paper is organized as follows: the description of the 
polymerization process, define the purposes, introduce the 
theoretical basis of the solution and present the results. 

THE CASE STUDY  
 INVESTIGATION OF A POLYMERIZATION 

PROCESS 

Process description 

The reactor what have been studied is a SISO (single 
input-single output) process, a CSTR where a free radical 
polymerization reaction of methyl-metacrylate is 
considered using azobisisobutironitil (AIBN) as initiator, 
and toulene as solved. The aim of the process is to 
produce different kinds of product grades. The number-
average molecular weight is used for qualifying the 
product and process state, and it can be influenced by the 
inlet initiator flow rate. When this assumption is 
considered, and the effect of the temperature is neglected, 
the multi input-multi output model could be reduced to a 

SISO process. Because of the isothermal assumption a 
four-state model can be obtained. [4] 

 
Fig. 1  The configuration of SISO process 

dCm

dt
= −(kp +k fm)CmP0 +

F(Cm,in − Cm )
V  (1.)

 

dCI
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= −kI CI +

FI CI ,in − FCI

V  (2.)
 

dD0
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2

+ k fm
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y =
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D0   (5.)
 

where: 

 
P0 =

2 f * kI CI

kTd + kTc

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

0.5

 (6.)
 

where: 
Cm  - concentration of the monomer in the reactor 
Cm,in  - monomer concentration in feed 
CI   - initiator concentration in the reactor 
CI,in   - initiator concentration in feed 
D0   - zero order moment of the chain length 
distribution 
D1   - first order moment of the chain length 
distribution 
kp, kfm, kI, kTc, kTd - kinetic parameters 

D0 is the zero order moment of the chain length 
distribution of the inactive polymer chain, which 
represents the lenght of inacitve chains. D1 is the first 
order moment of inactive polymer chains which means 
the distribution of molecular weight of inactive chains. 
And y represents the number average molecular weight, 
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which can not be measured, but it is calculated, as can be 
seen in the 5. equation. 

The nominal values of the process model, and the value of 
the kinetic parameters are given in Table (1). 

kTc= 1.3281x1010 m3/(kmol*h) 
kTd= 1.0930x1011 m3/(kmol*h) 

kI= 1.0224x10-1 1/h 
kp= 2.4952x106 m3/(kmol*h) 

kfm= 2.4522x103 m3/(kmol*h) 
f*= 0.58  
F= 1.0 m3/h 
V= 0.1 m3 

CI,in= 8.0 kmol/m3 
Mm= 100.12 kg/kmol 

Cm,in= 6.0 kmol/m3 

 

Table (1) – kinetic parameters and nominal values of 
the process model 

Problem description 

The task is producing three different kind of grades, 
called A, B, C. 

 
Fig. 2  set points of the grade transitions 

’A’ grade is produced in the first two hours with the 
number average molecular weight (NAMW) 25000 
kg/kmol. After ’B’ grade would be produced during the 
next five hours with the NAMW 27500 kg/kmol. The ’C’ 
grade is the terminating grade in this study which is 
produced in the last three hours with the NAWM 22500 
kg/kmol. 

The main goal is to minimize the amount of the off-grade 
product, so reduce the grade transition time as much as 
possible to show that there are reserved, untapped 
possibilities in the the process, and the model predictive 
controllers can have better performance than original PI 
controllers. 

 

 

 

MPC BASED FORMULATION OF OPTIMAL 
GRADE TRANSITION 

Model Predictive Controllers– theoretical basis  

MPC is a model based control algorithm where the 
models are used to predict the behavior of dependent 
variables (i.e. outputs) of a dynamical system with respect 
to changes in the process independent variables (i.e. 
inputs). In chemical processes, independent variables are 
most often setpoints of regulatory controllers that govern 
valve movement (e.g. valve positioners with or without 
flow, temperature or pressure controller cascades), while 
dependent variables are most often constraints in the 
process (e.g. product purity, equipment safe operating 
limits). The MPC uses the models and current plant 
measurements to calculate future moves in the 
independent variables that will result in operation that 
honors all independent and dependent variable 
constraints. The MPC then sends this set of independent 
variable moves to the corresponding regulatory controller 
setpoints to be implemented in the process. With the help 
of the Figure (3) the essence of the model predictive 
controlling is easily understandable:  

Fig. 3  The essence of model predictive controlling 

Formulating the aim of the method, an objective function 
is the result, which is: 

 

min
Δu(k + j )

(w(k + j) − y(k + j))2 + λ Δu2(k + j −1)
j=1

H c

∑
j= H p1

H p1

∑
(7.) 

where w(k+j) means the set point value, y(k+j) means the 
predicted dependent value in the (k+j)th discrete time 
moment, Δu means the incremention of the control signal, 
λ is an weight parameter. 
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The black box model – Impulse response model 

The identification of the dynamic part of a block-oriented 
model is a challenging task. In practice, the identification 
of the parameters of the IRM may be troublesome due to 
the large number of them [7].  
In this case the identification parameters can be obtained 
easily using ϕ variable which means: 
 ϕ(i) = y(i) − y(i −1) (8.) 
where y(i) is the output of the process in the ith moment. 
With the help of ϕ the parameters of the discrete impulse 
response model (IRM) can be calculated easily:  

 

gi =
ϕ(i)

ϕ(i)
i=1

N

∑
 (9.)

 

where tΔ denotes the sampling time, i the ith discrete 
time-step, and N is the model horizon. This results in a 
more parsimonious IRM model description, where the 
variance of the identification problem is decreased by the 
decrease of the number of the parameters to be estimated.  

The model based predictive controller 

The convolution model can be easily applied in model 
predictive control scheme. The control algorithm is based 
on the natural division of the system response into free 
and forced response terms [1]: 
ym k + t( )= y forced k + t( )+ y free k + t( ) (10.) 

where the forced output, ( )tky forced + , depends only on 
the future inputs,  

y forced k + t( )= K siΔu k + t − i( )
i=1

t

∑
 

(11.) 

where { }is are the gain independent step response 

coefficients defined by ∑
=

=
i

j
ji gs

1

; and ( )itku −+Δ  

denotes the change on the control variable: ( ) ( ) ( )1−−+−−+=−+Δ itkuitkuitku .  
As the previous equation suggests, the forced response is 
calculated by using a linear model, because the steady 
state gain, K, is calculated at the kth time step, and is 
assumed to be constant during the prediction. In control 
engineering practice such one step linearization is 
commonly used for simplifying the highly computational-
demanding optimisation task. The proposed method 
differs from these approaches in the calculation of the free 
response of the system that represents the effect of the 
previous control signals that can interpreted as the future 
response of the process assuming that the process input is 
constant during the prediction horizon, Hp.  Hence, 
convolution model is used to generate this free response, 
y free k + i( )= Qi + ys , where the iQ coefficients are [5]: 

 Qi = g jΔu k + t − j( )
j= t +1

N

∑
t=1

i

∑ ,           

pHi ,..,2,1= . (12.) 
The future incremental control actions, 

 
w = w k +1( ),K ,w k + Hp( )[ ]T

, are obtained by 

minimising the following cost function: 

min
Δu

= w − KSΔu + y free( )( )2
+ λΔu2

 
(13.) 

where w is the set point vector 

 
w = w k +1( ),K ,w k + Hp( )[ ]T

 denotes the future set-

point values, 
 
y free = y free k +1( ),K ,y free k + Hp( )[ ]T

 

the predicted free-response, and S is the gain independent 
dynamic matrix: 
 

 

S =

s1 0 0 L 0
s2 s1 0 0
s3 s2 s1 O 0
M M M M

sHc
sHc −1 sHc −2 s1

M M M M
sH p

sH p −1 sH p −2 L sH p − Hc +1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

H p × Hc

(14.) 

The move suppression coefficient, λ, employs a 
punishment for the variation of the manipulated variable. 
For nonlinear processes this constant can be gain-scaled 
by expressing it as a product of a scaled move-
suppression coefficient, γ , and the square of the process 

gain, 2K⋅= γλ  [8]. 
If the process constraints are not taken into account, the 
previous minimisation problem can be solved effectively 
by least-squares method, 

 Δu =
1
K

⋅ (ST ⋅ S + γ ⋅ I)−1 ⋅ ST ⋅ e
 

(15.) 

where e is the vector of the estimated errors 
e = r − y free , and I is a unity matrix. 
The controller has three parameters. These are the 
prediction horizon, Hp, the control horizon, Hc, and the 
gain independent move suppression coefficient, γ . The 
prediction horizon should roughly be equal to the 60% of 
the open loop settling time to ensure controller stability. 
When the process in nonlinear, the open-loop settling 
time is changing with the operating point. According to 
this effect, the prediction horizon can be adapted during 
the operation. A simpler solution is setting the prediction 
horizon equal to the 60% of maximum of the settling 
time. In the application study of this paper we consider 
the linear model of the process, and we consider the 
move-suppression coefficient, λ=4.8529*1010. The value 
of the move suppression coefficient was obtained with a 
parameter sensitivity examination, which can be seen later 

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint              1. - 3. October 2008, Izola, Slovenia



in Figure (6), because the move suppression coefficient 
depends on the length of the control horizon. [8]. 

2K⋅= γλ  (16.) 

γ=0  if C=1  (17.) 

γ =
C

500
(
3.5 ⋅ τ p

T
+ 2 −

(C −1)
2

)   if C>1 (18.) 
 
Where:  
C – length of the control horizon 
T – sample time 
τp – time constant of the first order and dead time model 
of the process 

MODEL PREDICTIVE CONTROL OF A SISO 
POLYMERIZATION PROCESS 

Model Identification 

For this study we generated input-output data with the 
white-box model, using sample time Ts=0.03h. We 
identificated our black-box model by these data-sets. Our 
black box model is the impulse response model and the 
step response model, the integral of IRM. 
Because of the nonlinearity of the white box model, we 
have chosen a steady state point and we identified our 
black box model around this point. After identification the 
model was validated, because of the control of its’ 
reliability.  

 
Fig. 4  Validation of black box model 

In this picture the red line means the input output point 
generated by the white box model, the blue line means the 
calulated point with the black box model. This figure 
shows that the identification succeded, because the black 
box model correlates the process well. 

Results 

The tuning parameters were selected to obtain satisfactory 
set-point tracking and disturbance rejection. Setpoint 
changes mean grade change.We have studied a PI 
controller and a model predictive contoller, DMC. The 

control signal is between the range u=[0.0046, 0.05] m3/h 
in both cases. The PI controller was implemented to the 
white box model and, the parameters of it is obtained the 
following way: a first order plus dead time model was 
identificated and due to this model the tuning parameters 
of PI controller could be obtained with ITAE method, and 
it can provide a good result, as it can be seen in the 
following figure: 

 
Fig. 5  simulation with PI controller 

The PI parameters: K=-6.78*10-6 TI=0.225 h, which can 
ensure a good kind of controlling. So the new set point 
(from 25000 kg/kmol to 27500 kg/kmol) is obtained in 1 
hour, with a overshoot with approximately ¼ decay ratio, 
and an other set point change in 7th hour, and the new set 
point is obtained in an hours.(green line is the set point 
signal, blue is the measured signal(NAWM) in both 
cases). So the length of the grade transition time can be 
seen a little bit long, so finding a method is neccessary to 
reduce the grade transition time, or finding a control 
algorithm which can provide producing less off-grade 
product. 
It is necessary to qualify the two controllers and to realize 
it a criteria was needed, and due to this it was possible to 
compare them with each other. The ISE (Integral Square 
of Error) criteria was chosen to satisfy this demand. 
Examining the figures the advantage of any controller is 
very difficult to state. The error of the PI controller was 
3.8418*107, and it would be rewarding to compare to the 
following performance of the DMC controller. 
The model predictive controller provides very different 
kind of controlling due to little overshoot. The set point is 
the same like in the case of PI controller, because of the 
comperableness. 
The tuning parameters of DMC, is the lenght of the 
prediction horizon, control horizon, and the value of the γ 
parameter, and it is also important to define the lenght of 
model horizon. The value of the move suppression 
coefficient depends on the lenght of the control horizon 
and the parameters of the first order and dead time model 
[8]. The model horizon is N=30, which was obtained by 
using the impulse response model (IRM) of process. The 
most effective value of tuning parameters can be reached 
with analysis their effects on the qualifying parameter, the 
ISE value. This effect can be seen in the Figure(6). 
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Fig.6  Effect of tuning parameters on Integral Square 

of Error 
In this figure the 0 values of the error is not reachable, 
because it is not permitted to have larger value of the 
control horizon than the predicitve horizon, so 
disqualifying these values a minimum value of the error 
can be seen (red point), so the parameters of this 
minimum place can be the ideal tuning parameters of the 
DMC controller. 
The prediction horizon is selected to be p=4 because, as 
the Figure 6 shows, increasing the prediction horizon the 
quality of controlling is getting worse. The control 
horizon is selected to be c=2, because when the length of 
the control horizon converges the value of the prediction 
horizon the controller becomes more aggressive, and it 
causes increasing error. 

 
Fig. 7  simulation with DMC controller. 

Obtaining the  tuning parameters of the model predicitive 
controller can be considered as an optimization problem 
where the objective function is to minimize the ISE value. 
It would be mixed integer optimization problem and it is 
the next task to solve it. 

The behavior of DMC controller is definitely different to 
the PI controller, but the DMC can be a little bit faster 
than the PI controller and has irrelevant overshoot. 
Comparing the DMC to the PI controller, the DMC can 
afford 1.3412*107 error. So the advantage of model 
predictive can be stated. Tuning these two controllers 
more agressively would result additional oscillations, and 
lenghten the time it takes for them to keep the number 
average of molecular weight in in accurate value, so a 
compromise is needed to be made in tuning the 
controllers for servo-mode. 

CONCLUSION 

In the chemical industry the importance of the 
polymerization processes is increasing. To develop these 
processes the length of the grade transitions are needed to 
reduce, because this way it becomes possible to avoid to 
produce off-grade products. To reach this demand a MPC 
algorithm was used to handle the grade transitions. In this 
work a PI and a MPC controller were compared each 
other. First we use the first-principle model of a 
polymerization process, and using this the black box 
model was identified. Using the impulse response and the 
step response model of the reactor, the DMC could be 
build for this reactor. It is seen that the performance of the 
model predictive controller is better, than the performance 
of PI algorithm. It is also proved by the ISE criteria. 
Generally, it is very important to find the best fitting 
controller algorithm to realize the objective function. In a 
lot of cases the advantage of MPC algorithms fits better to 
these objective function, but they have a huge 
disadvantage: in most cases it is necessary to use linear 
model approaches which are very sensitive for the 
identified parameters, and in nonlinear systems these 
parameters can change different kind of methods are 
available. The non-linear model predictive controllers can 
handle this problem, or adaptive algorithms are able to 
solve them. Regarding to the the increasing spread of 
MPC controllers, because of the rising industrial demand, 
it would be useful to develop the nonlinear model 
predictive controllers, because of the hope of better 
performance of the whole operating range. 
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